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Conditional average treatment effects (CATEs):
7(z) SE[Y(1) - Y(0) | X = 2]

Always assuming unconfoundedness and positivity

T £E[Y(1) - Y(0)] =Ew [E[Y | T =1, W] -E[Y | T =0, W]

Given W is a sufficient adjustment set

T(x) ZEYQ) -Y00) | X =2]=Ew[EY | T=1,X =2, W]|-E[Y |T=0,X =z, W]

Given W U X 1s a sufficient adjustment set
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Conditional outcome modeling (COM)

7=EBw[EY |T =1 W]-E[Y |T =0, W]

model  model

o

7 =Ew [p(1, W) — w0, W)]

Model-assisted estimator:

T % > (a1, w;) — (0, w;))

()
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COM estimation of CATEs

ATE COM Estimator: 7 = — 3 (a1, w;) — (0, w;))
n =

CATE Estimand:
T(z) 2EY(Q)-Y(0) | X =2]=Ew[EY | T=1,X =2, W]|-E[Y |T=0,X =2, W]

pt,wz) =REY | T=t,W =w, X = x]

CATE COM . 1 . .
— 1 iy L 07 5
Estmator: |0 " ny 2o (P06 ) = 40,05 2)



A

7 = T(x;) = (1, w, z;) — @10, w;, x;)

(Question:
What could go wrong with this estimator?
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COM estimation’s many faces

* G-computation estimators
e Parametric G-formula
e Standardization

* S-learner where “S” 1s for “Single”
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Problem with COM estimation in high dimensions

- I A .1 . R
4 ji P =T (K W) — il W)
W — — o Y Problem: estimate can
be biased toward zero
(Kunzel et al., 2019)



https://www.pnas.org/content/116/10/4156

How can we ensure that the
model doesn’t ignore T7



Grouped COM (GCOM) estimation

COM: 7=~ 3 (l1,w,) — 0, w,))

n =
i




Grouped COM (GCOM) estimation

COM: 7=~ 3 (l1,w,) — 0, w,))
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Grouped COM (GCOM) estimation

COM: 7=~ 3 (l1,w,) — 0, w,)) -

n =

: |44

1

GCOM: 7 == (fn(w:) = fio(w;))

)




Grouped COM (GCOM) estimation

.1 A A
COM: 7 == ((1,w;) — (0, w;)) T
W
.1 A A
GCOM: 7= — X}Mwi) - uo%
T = 1 network T = 0 network
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Trained with treatment group data Trained with control group data

T = 1 network T = 0 network

Problem: networks have higher variance than they would
if they were trained with all the data (not efficient)



(Question:
Write down the general form of a COM
estimator and a GCOM estimatot.
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TARNet

COM

GCOM

T = 1 network

TARNet

(Shalit et al.. 2017)

Too much variance!

T = 0 network
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http://proceedings.mlr.press/v70/shalit17a.html

TARNet

COM

GCOM

T = 1 network

T = 0 network

TARNet

(Shalit et al.. 2017)

Just right!
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TARNet CCOM

TARNet
COM T = 1 network (Shalit et al.. 2017)
Y
a Wi—— —Y /
Ly g
%% - 4
>
N
o
T = 0 network \
Y
Used in a COM
W F—— ——» Y .
ecstimator:
I A
= E Z (,u(l, wz) — M(O, wz))
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TARNet inetticiency

Only uses treated

group data
S
N
X

Only uses

control group data
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X-l.earner

(Kiinzel et al.. 2019)

1. Estimate £1(z) and flo(z) Assume X 1s a sufficient adjustment
set and is all observed covariates

2a. Impute ITEs o iment group: Control group:

710 = Yi(1) — fio(x;) 7o, = fla(x;) — Y5(0)

2b. Fit a model 71 () to predict 71,; from z; in treatment group

Fit a model 7y (z) to predict 7o,; from x; in control group

3. 7(z) = g(2) To(x) + (1 — g(x)) 71 (x)

where g(z) is some weighing function between 0 and 1. Example: propensity score


https://www.pnas.org/content/116/10/4156

(Question:
What would motivate someone to consider
a more complex type of estimation than

COM/GCOM?
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Propensity Score Theorem

Given positivity, unconfoundedness given W implies unconfoundedness
given the propensity score e(W). Equivalently,

(Y(1),Y(0) LT |W = (Y(1),Y(0)) IL T | e(W)

Graphical Proof:

See non-graphical proof in

@ Appendix A.2 of the course book
r (1)
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Implications for the
Positivity-Unconfoundedness Tradeoft

Recall that overlap decreases with the
dimensionality of the adjustment set

The propensity score magically
reduces the dimensionality of the
adjustment set done to 1! e(W) W —

Unfortunately, we don’t have access

to it. The best we can do is model it,

shifting the high-dimensionality

problem to the modeling of e(W) = P(T' =1 | W)




(Questions:

1.

What 1s the intuition behind why we can
condition on e(W) instead of W?

What 1s attractive about conditioning on
e(W) as opposed to W?

Why does this not solve positivity issues
when W is high-dimensional?
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Pseudo-populations

Reweighted population
(Pseudo-population)

@/@\ o

Regular population

P(T | W) # P(T P(T|W)=P(T) or
P(T|W)=1
1
Reweighting intuition: P(T" | W) - =1

P(T | W)
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Y
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Inverse probability weighting (IPW)

Y
P(t| W)

O




Inverse probability weighting (IPW)

1(T = )Y

Y01 =E | 55wy |

O




Inverse probability weighting (IPW)

-5 5

See proof in Appendix
A.3 of the course book @
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See proof in Appendix
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FAEY(1) - Y(0)] = E lﬂ(T ;/DY] o []1(T — O)Y]
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Inverse probability weighting (IPW)

-5 5

See proof in Appendix
A.3 of the course book @
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(Questions:

1. What happens if the estimated
propensity score for some unit 1s 1 or 07

2. What happens if the estimated
propensity score 1s near 1 or 0
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IPW CATE estimation

Not quite as natural with IPW as with COM, so beyond scope of course

Simple extension:

See, e.g., Abrevava et al. (2015) and references therein



https://www.tandfonline.com/doi/abs/10.1080/07350015.2014.975555

Questions:

1. What is the graphical intuition for how inverse
probability weighting deals with confounding?

2. What do we model in IPW? What did we
model in COM/GCOM estimation?
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Using both conditional outcome models and
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Using both conditional outcome models and
propensity score models

Model both p(t,w) and e(w)

Example:

s % > [A(1, w;) — (0, w;)]

1




Using both conditional outcome models and
propensity score models

Model both p(t,w) and e(w)

Example:

P= ST (L ewi) — (0,1~ é(uw)]

)
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Doubly robust methods

e Model both u(t,w) and e(w)
* Consistent if either fi(t, w) or é(w) is consistent

* Theoretically converge to the estimand at a faster rate than COM/IPW

* See Section 7.7 of the course book for references to relevant papers
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Matching
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Stage 1:
* Fit a model to predict Y from W to get the predicted Y
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Double machine learning

Stage 1:
* Fit a model to predict Y from W to get the predicted Y
* Fit a model to predict T from W to get the predicted T

Stage 2: - >®

Partial out W by fitting 2 model to predict Y — Y from T — T




Causal trees and forests

Flexible and yield valid confidence intervals (for sampling variability)
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